Efficient Revision of Propositional Knowledge Bases

Guillermo De Ita', Carlos Guillén?, A. Lépez-LépeZ*

"Universidad Politécnica de Puebla , 2INAOEP
deita@cs.buap.mx, cguillen@ccc.inaoep.mx, allopez@inaocp.mx

Abstract. We address the problem of update-revision of a knowledge base un-
der the principle of minimal change. In order to perform the revision operation
in polynomial time, we consider an initial knowledge base 2. expressed as con-
junctions of unitary or binary clauses (set of formulas in 2-CF). Given a new
Boolean formula F, we introduce the revision operator *; , where the computa-
tion of (X *; F) relies heavily on a selected model /of F. We present a poly-
nomial time algorithm to compute (X *; F) being F a 2-CF, but if F has not re-
strictions, the algorithm uses only one NP oracle call, resulting with an
exponential time over the length of F and with polynomial time over the length
of ¥, being common to consider the length of X much larger than the length of
F. Then our proposal of revision operation is in the complexity class PU),

Keywords. Intelligent Agents, Belief revision, Knowledge Representation, Sat-
isfiability Problem.

1 Introduction

Artificial Intelligence has motivated the researchers to explore new reasoning issues
and methods, and to combine disparate reasoning modalities into a uniform unified
framework, so as to deal with incomplete, imprecise, contradictory, and changing in-
formation. Classical logic has been developed long time ago to study unchanging
mathematical objects, being well-founded and consistent. However, it consequently
acquired a static nature.

However, the agent paradigm demands to represent, besides of static knowledge,
dynamic knowledge too. In this sense, logic theories have claimed a major role in de-
fining the trends of modem research, increasing its influence in the development of
algorithms to update-revise the Knowledge Bases of intelligent agents.

We consider in this work, the belief revision of a satisfiable Knowledge Base (KB)
of an agent given new information and, if a modification of the KB is required, this
has to be done losing the minimum of knowledge (i.e. according to the principle of
minimal change).

Various approaches for incorporating dynamically a single or a sequence of
changes into a KB have been proposed [2,4,8,10,13]. Almost all of these proposals
are plagued by serious complexity-theoretic impediments, even in the Horn case (4,8].

© A. Gelbukh, C. Ydriez Mdrquez, O. Camacho Nieto (Eds.)
Advances in Artificial Intelligence and Computer Science
Research on Computing Science 14, 2005, pp. 69-80

70 De Ita G., Guillén C., Lépez Lopez A.

Thus, an important problem to explore is the computational complexity of the revi-
sion approaches, and although all methods are clearly intractable in the general case
[4,9,10], is relevant to find under which restrictions some methods would become
tractable. In our case, we are interested in determining the class of formulas where the
incremental recompilation of knowledge with minimal-change can be done effi-
ciently.

To achieve a polynomial time when doing belief revision, we consider that T is in
2-CF (conjunctions of unitary and binary clauses) since for this class of formulas, the
SAT problem (revision of satisfiability) is solved in polynomial time. However, for
the same class of formulas (2-CF’s), some related problems are NP-Hard. For exam-
ple, given a formula F in 2-CF, the Max-2SAT problem (i.e. determining the maxi-
mum number of clauses of F that can be satisfied simultaneously), and the #2SAT
problem (counting the number of models that F has) are both NP-Hard [11,12].

The main algorithm (Revise) presented here, is based on strategies for determining
the satisfiability of a 2-CF X, starting by the construction of the transitive closure of
2. This closure of X also allows to find a model when X is satisfiable, Revise is an
update-revision scheme that finds a subset 2.’ < 2, where (2> U F) is satisfiable, be-
ing F a propositional formula without restrictions. Such subset 3.’ holds the Gins-
berg’s revision property [4], this means that does not exist ¥y, where ¥’ c y< X and
such that (y U F) will be satisfiable.

Once determined the subset 3’ < > such that (2’ U F) is satisfiable, we present
two different proposals for recovering the consistency of (X \ F). The first proposal
keeps the structure of X in such way that the revision scheme is inductive. Also, we
present a second proposal that, although it may extend the structure of the clauses of
2., changing from k-clauses to (k+1)-clauses, with 1<k, the process for satisfiability
revision continues requiring polynomial time.

2 Notation and Preliminaries

Let X={x,,...,x,} be a set of n Boolean variables. A literal / is either a variable x or a
negated variable ~x. ~/ denotes the negation of the literal /. We use v(/) to indicate the
variable involved by the literal /. For any variable x, the pair {x,~x} is said to be com-
plementary. We employ 1 and T as constants of the language which represent the
truth values false and true, respectively.

A clause is a disjunction of literals. The empty clause signals a contradiction. A
clause is tautological if it has a complementary pair of literals. For k € o4/ a k-clause
is a clause consisting of exactly k literals, and a (<k)-clause is a clause with k literals
at the most. A unitary clause has just one literal and a binary clause has exactly two
literals. A variable x € X appears in a clause c if either ~x or x is an element of c. Let
V(¢)={x € X: x appears in c}. Let P(c) and N(c) be the sets of variables occurring posi-
tively and negatively in ¢, P(c) N N(c) = D. A clause c is Horn, if |P(c)| <1.

A phrase is a conjunction of literals while a Disjunctive Form (DF) is a disjunction
of phrases. A Conjunctive Form (CF) is a conjunction of clauses. A k-CF is a CF
containing only k-clauses, and (<k)-CF denotes a CF containing (<k)-clauses. In the

Efficient Revision of Propositional Knowledge Bases 71

latter case, the CF is also called a non strict k-CF. An su-CF is a CF in which no vari-
able occurs more than s times. A (k,54)-CF is a k-CF where each variable appears no
more than s times, similarly a (<k,s4)-CF is a (<k)-CF where each variable appears s
times at most. For any CF F, let (F)={x € X : x appears in F}, while Lit(F) ={l: le
c Ac € F}. Aliteral / is pure in a formula F if / appears in F and its negation ~/ does
not occur in F.

An assignment s for F is a function s: v(F) — {0,1}. An assignment s can be also
considered as a set of literals where there is no complementary pair of literals. If / is
an element of an assignment s, then s sets / to true (s(/) =1) and ~/ to false (s(/) =0). If
we have F) ¢ F; then W(F)) < v(F3). Given two assignments: s,, s, such that 5, 52, 81
being an assignment for F; and s, for F; respectively, then s, is a partial assignment of
F, while s, is a total assignment for F,.

A clause c is satisfied by an assignment s if and only if (¢ N 5) # &. Otherwise we
can say that c is falsified or contradicted by s. A CF F is satisfied by an assignment s
if each clause of F is satisfied by s. F is falsified by s if any clause of F is contradicted
by 5. A model of F is an assignment M over v(F) that satisfies F, and is denoted by M
|-F, indicating that the assignment M is a model of F.

Let SAT(F) be the set of models that F has over its set of variables. If SAT(F) # @
then F is satisfiable otherwise F is unsatisfiable. Let #SAT(F)=| SAT(F) | be the car-
dinality of the set of models of F. Given F a CF, the SAT problem consists of deter-
mining if F has a model. The #SAT problem is the enumeration version of SAT, i.e.
counting the number of models of F.

A Knowledge Base (KB) X is a set of formulae. Given a KB ¥ and a propositional
formula F, we say that > entails F, written 3, |- F, if F is true in every model of }..
We say that ¥ supports M, an assignment, if M € SAT(Y), or equivalently, M }-Z.

Let LANG-SAT and #LANG-SAT be the notation for the SAT and #SAT problem
respectively, when propositional formulas in the class LANG-CF are involved, i.e. 2-
SAT problem is the SAT problem for formulas in 2-CF, and #3-SAT denotes #SAT
for formulas in 3-CF.

3 Graph Notation and the Transitive Closure

Let ¥ be a 2-CF, we express as Gy =(V,E) the dependence-graph originated by the
restrictions of .. The set of nodes of Gy is V= Lit(X) u {T,L}, T being a distin-
guished node associated with “True”, and L a distinguished node associated with
“False”. For each binary clause c=(x,y) € X there are two directed edges in E, given
by: ~x = y and ~y = x. For each unitary clause c=(u) € X there are also two directed
edges in E: T— u and ~u — L. Those edges reflect the fact that each clause is equiva-
lent to a pair of implications. We call these two directed edges originated by c, the
representative edges of c.

Let "=" be the reflexive and transitive closure over any node of V. It follows im-
mediately that for any two literals x and y, if x = y then if a feasible solution M (a
model of) has x set to true, and then y must also be true. T(x) denotes the set of all
such literals y forced by x, Vx e Lit(2), T(x) ={ye Lit(X) : x=>y }. Asx > y=~y

}l

72 De Ita G., Guillén C., Lopez Lépez A.

= ~x, then if y € T(x) then~x € T(~y). Note that T(~x) can be seen as the set of un;.
tary clauses resulting by applying unit resolution over 2. taking into account the uni.
tary clause (~x).

Furthermore, note that if ~x € T(x) then in any model of %, we cannot have x se;
true. Similarly, if x € T(~x), then x cannot be set to false in any model of ¥ v;
Lit(S), we say that T(J) is contradictory if there is a variable x € v(2) such that x
T(/) and ~x € T(/) or well, the distinguished node L € T(/), otherwise T(/) is sound.
Y is a (<2)-CF and there exist unitary clauses, i.e. (4} € 2, then L € T(~u) and T(~)
is contradictory.

If there is a variable x € w(X) such that T(x) and T(~x) are contradictory then J,
unsatisfiable. For a Y satisfiable and V/, I € Lit(Y), if T(~) is contradictory then J,
L

Let Cont(¥) = {/ € Lit(X): T(/) is contradictory}, note that for any literal
Cont(Y), (T U {(N}) is unsatisfiable. Let Base(X) = {/ € Lit(Z) : T(/) is sound
T(~I) is contradictory}. The set Base(Z) determines the set of variables which appear
in any model of T with only one of the two possible logical values. In fact, the logical
value with which such variables appear is the same as they appear in Base(X).

We have that Base(Y) N Cont(Y) = @. Let Any(Z) = Lit(X)-(Base(Z) L Cont(2)),
then V! € Any(Y), is a literal which could appear with whatever of the two logical
values in any model of ¥. Note that for any literal / € Cont(Y) we have that ~/
Base(Y), so Base(T) N Any(Z) = @. Then the set {Cont(Y),Base(2),Any(X)} speci-
fies a partition of Lit(¥). If SAT(Y) # @ then for any model M of X we have

Base(Y) c M, and if Any(T) # @ then Any(¥) N M # @. So, the following observa
tion is pertinent:

Remark 1. If ¥ is a satisfiable (<2)-CF then for any literal / € (Base(X) U Any(L)
there is a model M € SAT(X) such that/ € M.

In terms of the graph Gy, given a node (literal) /, T()) is the set of vertices of
that can be reached from /. A path from to any node v of Gy is a sequence of edgs
VoV1, ViVa,...» Vi.1Vi Where I = vo and v, = v. The length of the path is k. A simple Pafh
a path such that v, vy,...,; are all different. If T(/) is contradictory, then there IS
least one path from / where two contradictory nodes: x and ~x appear in such p2
and, we say that such path is contradictory.

Given a formula X in the class (£2)-CF with m clauses and » variables, we refer
closure to the procedure that computes the sets: T(x) and T(~x), Vx € v(X). Closurt
runs in polynomial time, in fact, the complexity is O(n- m) [7]. .

After computing the closure sets T(/), V I € Lit(2), we also obtain the sets of litef
als: Base(X), Cont(E) and Any(¥). Moreover, when [SAT(Z)| < 1, from the
Base(Y)) we can find the unique model of ¥ or otherwise, determine that Z is uns
fiable, The second possibility emerges when 3 / € Lit(X) such that / € Cont(Z) and p
€ Cont(X). So, checking for the satisfiability of ¥ in (2)-CF is done in polyno™
time. Furthermore, if ¥ is satisfiable, the construction of a model M of X is als0 don¢
in polynomial time by the same procedure closure[7].

is

Efficient Revision of Propositional Knowledge Bases 73

Proposition 1. Let X be a satisfiable (<2)-CF and ¢ a ($2)-clause, then the revision of
satisfiability of (X A c) can be done in polynomial time.

As discussed above, the closure procedure checks for satisfiablity of any (<2)-CF
in polynomial time, and as (X A ¢) is a (<2)-CF, then proposition 1 follows at once. In
fact, if we know T(/), V/ € Lit(2), then we can revise if any clause c is contradictory
with 2 iff VI € ¢, / € Cont(2). Furthermore, if F is a new CF, the revision for the sat-
isfiability of (X A F) is done in linear time over the length of F, if we know Cont(Y.).

Examp]e 1. Let Z= {c1=(x,-, ~x2), = (x,, x;), C3= (x,, x,), C4~ ("“X}, IJ), C5"':'(~x2, x;),
c6= (~x2 ~x4), c7= (X2, Xxs5), cs= (X3, ~x5)}, whose representative edges are:

Cli~X|= ~X2 , X2 X, Coli=X—X3 ; ~Xa=—> Xj,
C3. ~X)—> X3 ,~X3—>X;, Cai X —>X3 ;~X3 =>~X;,
Cs: X Xy 5 ~Xy — ~X3, Co: X2 ~Xy4 ; Xy — ~X2,

Cy.~X3 > X5 ,~X5s —> X3, Cg. ~X3—> ~Xs) X5—2X3.

Fig. 1. The Dependence-graph for the formula % from example 1.

In Figure 1, we present the dependence-graph Gy for the formula 2. The different
sets T()), VI e Lit (¥) are also shown as well as the sets: Base(2), Cont(¥), and

Any(2).
T~x;)= { ~x;, ~x2 X2, X3, X5, X4 ~X4 X5}, T0x;) ={x), X3},
n~x2)= { ~X2, Xp, X3 X5 }’ T(xZ) e {xJfovxj Xty Xy ~x2},
N~x3)= { ~x5 ~%1, X3 X5 ~X5 X2 }, Tx;) ={x3},
n~x4)= {“"'x.f, ~X3 Xj, X3 X5 }; T(xJ) o {xll ~X2 X1, X3 X5 },
T(~x5)= {~X5, X3 X1, X3, X4 ~X4 ~X2 }, T(X5) = { Xs, X3 }

We notice that T(~x,), T(x;), T(~xs), T(~xs) are all contradictory. Then, Cont(¥) =
{~x), x3, ~x; ~xs5}, Base(X) = {x;, ~x5 x3 xs} and Any(2) = {x, ~x,}. And the two
models of SAT(X) are: {x;,~x; X3 xsx,} and {x), ~x X3 x5, ~x,}.

Given a formula Y, we call the reduction of 2. by a literal /, (also called forcing /)
and denoted by X[/] to the set of clauses generated from 2. by removing all clauses

74 De Ita G., Guillén C., Lopez Lopez A.

containing / and then removing ~/ from all the remaining clauses. For example, jf ¥
the formula of the example 1, X[~x2] = {(x,), (x)), (x3), (=x1, X3), (x5), (x3, ~x5)}.

For an assignment s = {/},,..., h} and a formula X, we define the reduction of
by S5, as: Z[S] = Z [11][12].[1&] For short, we write Z[II,Iz,....,Ik] instead
X[{l,ha,....,.&}]). For example, considering again the formula in example 1, ang per.
forming the reduction given by the partial assignment s={x2,~x3}, we obtain 2xy~x,)
= {(II): (x.‘) s("'xl)’ (xJ)) ("'x«l)’ (NxJ)}'

The unit clause reduction over a formula X consists of, given a unitary clause
c=(u), performing a reduction of X for the literal of the unitary clause, that is, 2[u].
unit clause reduction can generate new unit clauses. Unit Propagation (UP) is the
erative process of doing unit clause reduction over a set of clauses ¥, until there is
additional unitary clause in the reductions of X.

4 Incremental Recompilation Procedures

From now on and as long as we do not establish the contrary, we consider an initial
satisfiable knowledge base (KB) X in (<2)-CF. We want to revise X given new

formation expressed by a formula F, denoted as (3.*F), while (X + F) expresses that
F is simply added to 2 and (X - F) denotes that F is removed from X. We present

two different proposals for the operation (2*F) following the principle of minimal
change.

Proposition 2. Let Y be a satisfiable CF and c a clause such that (v(c)—w2)) #
then (X A ¢) is satisfiable, . ‘

(Z A ¢) is satisfiable since for every model M of ¥, we can extend M adding
literals that appear in ¢ and do not appear in Lit(Y) and such extended assignment is
model for (X A ¢).

Given a new clause c (independent of its number of literals) such that (\(c) - _)
@, then (%) = (X A c), because (XU ¢ }) is always satisfiable based on proposr
tion 2. Then, if the KB Z is satisfiable, the only way that (XU{ ¢ }) can be unsatisfi-
able is by aggregating a clause ¢ such that v(c) ¢ WX) and where ¢ contradicts som¢
clause(s) of X. '

Let consider that the new information for the revision process consists of 2 Pro
positional formula F which is satisfiable as well as the KB Y. We want to revise =
that (X * F) becomes satisfiable. We work based on the rejection principle, i.¢., new

information F for revising ¥ is preferred over older information which could be over
ridden [S].

Efficient Revision of Propositional Knowledge Bases 75

4.1 Formula-Based Change

If a KB X is inconsistent with a new formula F, a straightforward method to gain
consistency with F is to remove formulas from X. Let W(Z,F) be the set of maximal
subsets of X which are consistent with the revising formula F:

WEA)={ZcZ: T UF F)&~3rE cycE & ~yUF |L)).

The set W(Z,F) contains all the plausible subsets of X that we may retain when in-
serting F [10].

One of the most common ways to achieve a revision operation is by a formula-
based change applying the “Ginsberg’s approach”, where: £*GF = {Z°U F : ¥’ €
W(Z,F)}. That is, the result of revising £ with F is the family of maximal subsets X’
c X that are consistent with F, plus F. Note that in W(X,F) could exist more than one
subset with the same number of clauses, so there could also exist more than one sub-
set £’ with the maximum number of clauses over W(Z,F).

4.2 Model-Based Change

Model-based revision operators refer only to the extensions, i.e. the model M of a
Knowledge Base, regardless of the syntactical knowledge representation. The consid-
ered model-based change operators rely heavily on the notion of model closeness de-
fined by MAM’ being M a model of X and M" a model of F. The symmetric set differ-
ence MAM' = (MUM)-(Mn\M'), then WMAM’) is the set of variables of v(2_) whose
value in M is different to that in M,

Dalal [14] proposes to interpret minimality of change in terms of minimal cardinal-
ity of model change. In his approach, (2_*p F) has those models of F which have as
few variables different from any model of ¥ as possible. The distance between two
formulas p and g is: |A™"(p,q) = min{|W(MAM’)| : M € SAT(p) & M € SAT(q)},
that is |A|™"(p,q) is the minimum number of variables in which models of p and q di-
verge. And Dalal’s approach is defined as: SAT(X*pF) = {M € SAT(F): IM €
SAT(Z) & MMAM)I=|AI™(Z,F)}.

Note that under the previous definition, an element of SAT(X*pF) is not necessary
a total assignment for (X U F), specially if v(2.) — v(F) # @.

In the work of Eiter[4], the complexity of the counterfactual revision problem is
treated. Such problem consists of, given a KB ., a revision formula F, and a formula
q, deciding whether g is derivable from ¥ * F considering different revision opera-
tions. For the two revision operations discussed here (Ginsberg’s and Dalal’s ap-
proaches) this counterfactual problem is at the second level of the polynomial hierar-
chy, thus harder than classical implication in propositional logic. Furthermore, in the
Hom case, the complexity level is lowered by one, but the problem remains intracta-
ble for each approach. In exact way, for propositional formulas X, F and ¢ without
any restriction, and considering the counterfactual problem: (X*g F) [— q is a Il -
complete problem. While, if both £ as F are Horn formulas, the above counterfactual
problem is co-NP-complete.

76 De Ita G., Guillén C., Lopez Lopez A.

In the case of Dalal’s approach, for formulas in general, the counterfactual Problen,
is a PNFIOUog M]_complete problem, while if both £ as F"are Horn formulas the counter.
factual problem remains in the complexity class pNPIOIE I complete.

In order to avoid these serious complexity-theoretic impediments, we consider
this work, a variation of the Ginsberg’s revision operator.

We have observed that the results of the revision operation between two satisfiab|,
formulas (T * F) depend heavily on which model / of F is being considered, so we e,
fer to our revision operator as: (T *; F), and we show later that Z*| F < *; F.

Let WE) = {Z'cZ:~Z' VI F L&~ E cYSE& ~YUT | 1)) be the
possible consistent subsets of £ with an assignment /, then: X *, F = {Z°U F . |
SAT(F)and X' e W(Z,D}.

Notice that in this case as / is a model of the formula F, this guarantees that each
element of W(Z,/) satisfies F. The model / can be considered as a phrase of the Dis-
junctive Form of F. Then, depending on the model / of F that we consider, we obtain
a specific set of clauses for Z *; F.

Let CT(Z) = {Sc X: 3¥’ € W(Z,) & S= (X -Z’)}. Each element in CT(Z) con-
tains a subset of clauses from X which are conflicting with F (in fact, with one of

models: 7). We refer to the set CT{Z) as the conflicting clauses of X with I and we
show in the following procedure how to compute this set.

4.3 A Procedure for Computing (3.*; F)

Input: A satisfiable KB Y in (<2)-CF and a satisfiable
formula F such that (¥ U F) is unsatisfiable.

OutputX’ ¢ I where I’ € W(X,I) being I a model of F.
Procedure Revise:

I: Call closure(X), obtaining the sets: Cont(X), Base(Z), Any(Z) as well asa model
Mof L.

2: Let I be a model of F (we will explain later on how to obtain that model). The
model / is a conjunction of literals, so each literal / € I must be considered as
unitary clause in (Z U J),ie, CUD=E Are s ().

3: As (£ U F) is unsatisfiable, (£ U I) is unsatisfiable too, but not all the literals

I are in conflict with Z. For any literal / of if/ ¢ Cont(E) then /=I-{/}. Notice tha!
the resulting assignment / could not longer be a model of F.

4:Let A=ZX[/] and B =3 N Y[/]. A contains the clauses of ¥ conflicting With
and B the clauses of X satisfied by /. Notice that (WA) N v(})) = @.

5: Each clause from X that changed to a nil clause in Y[/] is part of CTAZ)- we
remove all nil clauses from A.

6: We split the set of clauses of A in Al and A2, where Al = {ce A:c€ 1} .and
A2 = A-Al. As Al ¢ ¥ and we consider that T is satisfiable, then Al is satisfi
able too.

7: Call closure(Al), obtaining the sets: Base(Al), Cont(Al), Any(Al) and
model M of Al.

Efficient Revision of Propositional Knowledge Bases 77

8: Apply the pure literal rule: For each literal / in Lit(A), if / is a pure literal in A,
then Al1=A1[/] and A2=A2[]].

9: Apply the non conflicting literals rule: For each literal / in Base(Al), if ~/ ¢
Lit(A2) then A1=Al[/] and A2=A2[/].

We iterate these two rules as many times as can be done.

The resulting clauses of Al are in conflict with the clauses of A2.

10: As A2[M)] contains just the conflicting clauses of X with (/ U M), then for any
nil clause in A2[M], we retrieve its original clause ¢ in X and add it to CT(X).

11: Let £’ = (Z - CT(X)).

12: Apply a last revision process: For each clause ¢ in CT(Z), we check if (Z’ U
{c}) is satisfiable and then &’ = 2’ U {c}.

This last step guarantees that £’ € W(Z,/) and based on proposition 1, this step exe-
cutes in polynomial time since £’ U {c} is a (<2)-CF.

Notice that each one of the steps in the above procedure runs in polynomial time
given that the reductions used, the closure procedure, and the revision of satisfability
are all polynomial time procedures.

The procedure Revise returns only one of the plausible subsets £’ of I that we
could retain when inserting F. In this sense, Revise works as a satisfiability algorithm

to find an assignment M which satisfies (£’ U F) and where M is an extended assign-
ment of / (a phrase of the DF of F).

4.4 Recovering the Satisfiability of 2 U F)

Once that we had applied the procedure Revise(Z,F), we obtain the set CT{X) = Z-Z’.
We have two proposals in order to recover the satisfiability of (X U F).

One of these proposals, and also very straightforward is to eliminate from 2 the
clauses of CT{Z).

In this case, this approach of adding a new formula and retracting some others
from T, follows the formula-based change principle, and then, as pointed out by Eiter
[4], heavily depends on the syntax of . Thus, it is not expected that this approach re-

spects the irrelevance of syntax postulate.
The second proposal consists of weakening the information coded by each clause

¢, ¢ € CT(X), i.e. extending the clause ¢ with a new literal outside of the language.
Then, each clause ¢ € CT(Z) changes to ((c) v /) being /,, i 21, a new literal which
does not appear before in Lit(¥). The aggregation of this dummy literal allows to sat-
isfy the new clause ((c) v /;) as well as the formula F simultaneously, since we must
assign to the new literal /, the appropriate logical value to have ((c) v /,) with a true
value, as shown by proposition 2. In this way, the new clause ((c) v 1)) will not be in

contradiction with F.)
Each dummy literal /, is not further used in this process of extending clauses.

Although, the size of some clauses from X were extended, its representative edges
do not change in the dependence graph Gy, since we are taking /, as a virtual literal
used only to satisfy ((c) v /)). In fact, for every model M of 2, e M

78 De Ita G., Guillén C., Lépez Lopez A.

This latter proposal is commonly used in updating logic programming, where the
weakening procedure is applied over logic programs which are contradictory with
new logical program which is being aggregated. This proposal was inspired by the
previous works in [1,3,5].

Both proposals can be used depending on the application, considering which one
more representative regarding to the minimal change. This will depend on the work-
ing scenario given that, as it is now widely believed, there is no general purpose, do-
main independent means of updating knowledge bases that will “do the right thing”
under all circumstances [13].

Notice that in both proposals, the recovering of the satisfiability of (L u F)
polynomial over the length of (X U F).

To design a procedure for computing a model of a formula F is a classic NP-
Complete problem (SAT problem) and, as it is well known, has an exponential time
complexity, but not for Horn and 2-CF formulas which are solved in polynomial time.

For formulas F in general (not Hom, not (<2)-CF’s), let consider that we make
call to an NP oracle O with argument F and this oracle returns a model / of F. Thus,
our revision operator *; has an exponential time complexity over the length of F but
continues being polynomial over the length of 3, which is considered in general,
much larger than F. In our proposals, the recovering of the satisfiability of (X u
continues with a polynomial complexity.

5 Conclusions

We introduce a new revision operator *, where, given a KB 2 in (<2)-CF and a satis-
fiable formula F, the computation of (X *, F) relies heavily on the selection of
model [of F. Once determined a model of F, we present a procedure to compute
subset 3> = ¥ such that 3’ follows the Ginsberg’s approach, this is, (X’ U F) is sat-
isfiable and there is not ysuch that >’ ¢ y< X and (Y v F) will be satisfiable.

The results presented here, show that the revision operator *; in the face of single
2-CF formulas can be carried out efficiently. Moreover, as our proposals are induc-
tive, we extend these results for considering an efficient incremental recompilation
over 2-CF’s.

Once determined a maximum subset).’ < 2 such that (2’ U F) is satisfiable, we
also present two different proposals to recover the satisfiability of (2w F) working
polynomial time.

Given 3. and F two 2-CF’s, the algorithm Revise computes (2 *; F) in polynomial
time, but if F has not restrictions then, the computation of (2. *; F) is solved by our
polynomial time algorithm with only one NP oracle call, showing that our procedure
is in the complexity class PNFl!,

Efficient Revision of Propositional Knowledge Bases 79

References

[1] Alferes J.J., Leite J.A,, Pereira L.M., Przymusinska H., Przymusinski T., “Dynamic updates
of non-monotonic knowledge bases”, Jour. Of Logic Programming 45, 2000, pp. 43-70.

[2] Darwiche A., “On the tractable counting of theory models and its application to truth main-
tenance and belief revision”, Jour. Of Applied Non-classical Logics 11, 2001, pp.11-34,

[3] Alferes J.J., Pereira L.M,, “Logic Programming updating — a guided approach™, F. Sadri, A.
Kakas, editors, Essays in honor of Robert Kowalsky, LNA/, Vol. 2, 2408, 2000.

[4] Eiter T., Gottlob G., “On the Complexity of Propositional Knowledge Base Revision, Up-
dates, and Counterfactuals”, Artificial Intelligence 57, 1992, pp. 227-270.

[5] Eiter T., M. Fink, G. Sabattini, H. Thompits, “Considerations on updates of logic pro-
grams”, Lecture Notes in Artificial Intelligence, Vol. 1, (JELIA'00), 2000, pp.212-226.

[6] Eiter T., Makino K., “Generating all abductive explanations for queries on propositional
Horn Theories”, INFSYS Research Report 1843, (2003), pp.03-09.

[7] Gusfield D., Pitt L., “A Bounded Approximation for the Minimum Cost 2-Sat Problem”,
Algorithmica 8, (1992), pp. 103-117.

[8] Gogic G., Papdimitriou C., Sideri M., “Incremental Recompilation of Knowledge™, Jour. Of
Artificial Intelligence Research 8, 1998, pp. 23-37.

[9] Katsuno H., Mendelzon A., “On the Difference Between Updating a Knowledge Base and
Revising it”, In Proceedings KR-91, pp. 387-395, 1991.

[10] Liberatore P., Schaerf M., “The Complexity of Model Checking for Belief Revision and
Update”, Procs. Thirteenth Nat. Conf. on Artificial Intelligence (AAAI’96).

(11] Roth D., On the hardness of approximate reasoning, Artificial Intelligence 1996;
82:pp.273-302.

[12] Russ B., Randomized Algorithms: Approximation, Generation, and Counting, Distin-
guished dissertations, Springer, 2001.

(13) Winslett M., Updating Logical Databases, Cambridge University Press, 1990.

[14] Dalal M. “Investigations Into a Theory of Knowledge Base Revision: Preliminary Report”,
Procs. Seventh Nat. Conf. on Antif. Intelligence (AAAI-88), St. Paul, Minnesota, August
1988, pp. 475-479.

